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Abstract

The millions of common DNA variations that occur
in the human population, or among inbred strains of
mice and rats, perturb the expression (transcript
levels) of a large fraction of the genes expressed in a
particular tissue. The hundreds or thousands of
common cis-acting variations that occur in the
population may in turn affect the expression of
thousands of other genes by affecting transcription
factors, signaling molecules, RNA processing, and
other processes that act in trans. The levels of
transcripts are conveniently quantitated using
expression arrays, and the cis- and trans-acting loci
can be mapped using quantitative trait locus (QTL)
analysis, in the same manner as loci for physiologic
or clinical traits. Thousands of such expression QTL
(eQTL) have been mapped in various crosses in mice,
as well as other experimental organisms, and less
detailed maps have been produced in studies of cells
from human pedigrees. Such an integrative genetics
approach (sometimes referred to as ‘‘genetical ge-
nomics’’) is proving useful for identifying genes and
pathways that contribute to complex clinical traits.
The coincidence of clinical trait QTL and eQTL can
help in the prioritization of positional candidate
genes. More importantly, mathematical modeling of
correlations between levels of transcripts and clini-
cal traits in genetic crosses can allow prediction of
causal interactions and the identification of ‘‘key
driver’’ genes. An important objective of such stud-
ies will be to model biological networks in physio-

logic processes. When combined with high-density
single nucleotide polymorphism (SNP) mapping, it
should be feasible to identify genes that contribute
to transcript levels using association analysis in
outbred populations. In this review we discuss the
basic concepts and applications of this integrative
genomic approach to cardiovascular and metabolic
diseases.

Introduction

Cardiovascular and metabolic diseases develop as a
consequence of a complex cascade of events, as de-
picted conceptually in Fig. 1. An individual inherits
a set of alleles (genotype) from her or his parents and,
in combination with environmental factors (life-
style), these determine physiologic states such as
lipoprotein levels, adiposity, and immune functions.
These, in turn, can result in abnormalities such as
vessel wall dysfunction, hypertension, and insulin
resistance. Over many years these factors influence
the development of chronic diseases such as diabe-
tes, kidney disease, atherosclerosis, and myocardial
infarction. Most of these interactions are likely to be
influenced by genetic factors. A major goal of med-
ical research is to define the various causal interac-
tions and genetic factors involved. This knowledge
would be useful in the rational design of maximally
effective, minimally toxic drugs to treat these dis-
orders. It would also provide a framework for
understanding how genetic variations interact with
an individual�s sex and environment to influence the
onset and progression of the diseases.

At present, our overall understanding of the
pathways for metabolic and cardiovascular diseases
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is fragmentary, despite impressive advances in cer-
tain areas. Some of the elements involved have been
defined in studies of Mendelian disorders and model
organisms such as mice and rats. For example, over
60 Mendelian mutations are associated with in-
creased atherosclerosis and over 200 are associated
with diabetes (Rizvi et al. 2002). Transgenic studies
in mice have also been very informative (Biddinger
and Kahn 2005). For example, at present, well over
100 knockout or transgenic mice have been shown
to exhibit differences in atherosclerotic lesion
development. However, whether such extreme
variations are physiologically relevant for common
forms of the disorders is unclear, and many of these
findings with transgenic animals may in fact repre-
sent artifacts resulting from mixed genetic back-
grounds (discussed in Ghazalpour et al. 2004).

Efforts to dissect complex forms of metabolic
and cardiovascular diseases have been only modestly
successful. Positional cloning of genes for these
diseases in humans has proven very difficult, al-
though there have been some notable successes
(Lusis et al. 2004). Candidate gene studies have re-
vealed a number of genes that appear to be impor-
tant, but most of the thousands of positive
associations reported over the past 20 years have
come from studies that were underpowered and a
large fraction are likely to be attributable to prob-
lems such as ethnic admixture and publication bias.
Studies in experimental organisms, primarily mice
and rats, have resulted in the identification of hun-
dreds of QTL but few genes or mechanistic insights
(Ghazalpour et al. 2004). These studies have made it

clear that metabolic and cardiovascular disorders are
very complex, resulting from a large number of fac-
tors, each exhibiting a small effect.

Most studies of metabolic and cardiovascular
disorders have used a classic ‘‘one gene at a time’’
approach. This approach has been very successful in
clarifying Mendelian traits such as familial hyper-
cholesterolemia and in elucidating individual path-
ways such as the regulation of sterol metabolism.
However, complex traits such as the common forms
of atherosclerosis present special problems. In par-
ticular, it is likely that most complex diseases result
from the interactions of multiple genes and, there-
fore, cannot be realistically modeled by single-gene
perturbations. One promising solution is a global
strategy. Global approaches have been made possible
by several technical and conceptual advances during
the past decade. These include, of course, the Hu-
man Genome Project, which has provided a ‘‘genet-
ics parts list’’ of the human genome and the genomes
of many model organisms, including mice and rats.
They also include rapid genotyping methods, DNA
arrays for global quantitation of transcript abun-
dances (both protein coding and noncoding), and the
Internet, which make dissemination of global data
sets possible. Global proteomic and metabolomic
approaches are being developed (Weston and Hood
2004).

One of the most exciting applications of global
data sets involves the combination of natural genetic
variation and expression array analysis, sometimes
referred to as ‘‘genetical genomics’’ (Jansen and Nap
2001). Just as environmental or single-gene

Fig. 1. Cascade of interactions in
metabolic and cardiovascular
disorders. This cartoon depicts some
of the interactions thought to
contribute to the development of
diabetes, atherosclerosis, and their
complications. Most of the
interactions are likely to involve
genetic factors (genes A�Z). Some
genes may be markers of clinical
disease (gene Z¢).
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perturbations can be used in conjunction with gen-
ome-wide expression array analyses to identify reg-
ulatory links, the measurement of transcript levels
in populations allows the identification of coregu-
lated genes and of relationships between transcript
levels and clinical traits. In addition, this integrative
approach relates DNA variation to transcript abun-
dance, allowing identification of primary (cis-acting)
and secondary (trans-acting) effects controlling
transcript abundance. The integration of genetic and
transcript abundance data has recently been used to
predict causal interactions in the complex trait of
adiposity; this kind of analysis should be applicable
to any complex trait (Schadt et al. 2005).

Although the insights that can be gained through
the genetical genomics approach are extremely
promising, the concepts and implications are often
difficult to grasp, especially for those not working in
the area of quantitative genetics. There are several
reasons for this, but a major one is that the extensive
data generated can be approached and analyzed in
many ways, with different but often overlapping
questions being asked and often times sophisticated
and unfamiliar statistical approaches being used. For
this reason, we review the basic underlying concepts
and logic from a generalist perspective and then
discuss a number of the applications that have been
used to study metabolic and vascular disease in the
mouse model. We conclude with a perspective on
areas of difficulty and challenges for the future.

Basic concepts of interpreting expression QTL

The concept of mapping transcript levels is not new.
Practitioners of QTL analysis appreciate that any
quantitative trait can be mapped, and measuring
relative transcript levels with reasonable accuracy
has been feasible for quite some time. Initial appli-
cations were restricted to relatively few transcripts
in any one study because of the technical difficulty
in measuring multiple transcripts in tissue samples
from hundreds of animals (Lan et al. 2003;
Machleder et al. 1997). These studies revealed some
of the basic observations made by larger-scale stud-
ies, namely, that transcript levels were often con-
trolled by more than one locus and that these did not
necessarily coincide with the location of the
respective gene. However, the availability of micro-
array technology has made it possible to measure
tens of thousands of transcripts simultaneously (in
theory, all transcribed genes and noncoding RNA,
were that to be known), though cost is a major
impediment for most investigators. Analysis of so
many traits raises unique technical issues related to
processing and handling of large-scale data sets, as

well as complex statistical concerns, which we will
address as relevant in our discussion of applications
below. More importantly, the simultaneous analysis
of a large fraction of expressed genes in the setting of
a genetic cross enables analyses and insights never
before possible.

Just as with ‘‘traditional’’ traits studied in QTL
analyses, the identification of a QTL for a gene
transcript (an eQTL) implies that there is a genetic
sequence variation within the genomic region
encompassed by the QTL that directly or indirectly
influences transcript levels (Flint et al. 2005). When
an eQTL encompasses the physical location of the
gene for that transcript, it is likely that the causative
genetic variation resides within the gene itself (i.e.,
the transcript is being regulated in cis, and so the
respective eQTL is referred to as a cis-eQTL). Con-
versely, when an eQTL does not encompass the
physical location of the gene for that transcript, the
causative genetic variation does not reside within
the gene itself. The expression of the transcript in
that case is regulated in trans (i.e., under the control
of a different gene or genes physically located at that
locus, and the eQTL in this case is referred to as a
trans-eQTL).

The finding of an eQTL for a gene therefore
indicates that the gene transcript levels are influ-
enced by genetic factors. In the mouse F2 popula-
tions that we have studied, at least 30% of all
expressed genes in a given tissue have one or more
eQTL. If one is interested in those genes that contain
polymorphisms or mutations that are responsible for
a specific phenotypic difference between individuals
in the population being studied (e.g., susceptibility
to atherosclerosis), then it is the set of genes with
cis-eQTL that is of interest. In other words, these
genes are the genetic drivers for the phenotypic
variation among individuals. On the other hand,
those genes with only trans-eQTL play a role in the
expression of phenotypic variation, but they are
responding to other genetic factors rather than being
primary drivers.

For an extreme example of this concept, consider
a single-gene mutation such as the Ob mutation
(leptin deficiency due to a mutation in the Leptin
gene) that leads to obesity and other consequences in
affected mice. When compared with the background
strain, the Ob mouse is genetically identical except
for the Leptin gene mutation. An expression micro-
array analysis of liver, however, would show differ-
ences in the transcript levels of at least hundreds of
genes between Ob mice and the background B6
strain. Some of these would be genes directly con-
trolled by leptin, others would be genes far removed,
with altered levels due to the massive obesity that
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results. In this setting, the Leptin gene would be
considered the cis variation, and all the reacting
genes the trans variations. The same concept holds
in an F2 population, except that there are simulta-
neously many cis variations (cis-eQTL are one
example), each with consequent effects on a variable
number of secondarily affected genes (the trans-
eQTL). In our experience with F2 intercrosses be-
tween common inbred mouse strains, the fraction of
total genes with cis-eQTL in a single tissue is
approximately 10%, and the fraction with trans-
eQTL is several-fold larger. When one considers
multiple tissues, the fraction of total genes with cis-
eQTL will be greater.

For practical purposes, we have assigned a gene
as cis-acting if the eQTL mapped to within 20 cM
of the physical location of the gene. As QTL for any
trait are relatively broad and encompass from tens
to hundreds of genes, the fact that the physical
location of a gene coincides with an eQTL for its
transcript does not exclude the possibility that it is
in fact a trans-eQTL controlled by closely linked
genes. We have experimentally validated that the
majority of presumptive cis-eQTL are true cis-eQTL
by the application of a classic cis-trans test in
which (B6 · DBA)F1 mice were analyzed for the
relative levels of transcript from each allele (Doss et
al. 2005), as depicted in Fig. 2. In a cis-regulated
gene, the allelic expression in F1 mice should be
similar to the ratios observed in the two parental
strains. If the gene is regulated in trans, we expect
the allelic ratio of transcripts from each allele to be
approximately 1:1, because a truly trans-acting
regulator should act in a similar manner on both
alleles. A gene could exhibit a combination of
trans- and cis-regulation, although the cis-regula-
tory component should cause the ratio to be dif-
ferent than 1:1, albeit to a lesser extent than might
otherwise be the case. Our finding confirmed that
for analyses of F2 data, it is reasonable to consider
that an eQTL falling within 20 cM of the gene
location is indicative of cis-acting regulation.
Where critical, a cis-trans test can be used to
definitively determine this. The ability to identify
cis-acting genes is a key aspect of deriving causative
associations from the genomic expression data as
discussed below.

Levels of a given transcript may be significantly
influenced by many genes, as one would expect. In
this case, multiple eQTL may be identified, which
may all be trans-eQTL or a combination of both cis-
and one or more trans-eQTL (Fig. 3). In our studies
there is a strong inverse relationship between LOD
score and the likelihood of a given eQTL being cis or
trans in nature. Thus, the number of eQTL detected

per gene and the relative frequency of cis- versus
trans-eQTL across all genes will be highly dependent
on the LOD threshold one sets for defining an eQTL.
As discussed below, in some settings it is desirable
to have stringent thresholds and in other settings
have relatively low thresholds. The determination of
expected false discovery rates (FDRs) at different
thresholds can assist in selecting the LOD threshold
to use in a given situation.

Transcript levels may also be significantly af-
fected by factors that do not result in eQTL but may
influence the occurrence and magnitude of detected
eQTL. Genetic regulation that is dispersed among
many loci with small effects is one situation, and of
course environmental influence is another. We have
also observed pervasive effects of sex on gene
expression and eQTL detection in multiple tissues
and now routinely use a genetic model approach for
QTL detection that incorporates sex as both an
additive and an interactive factor in data sets that
include both sexes (unpublished data).

Fig. 2. Cis- and trans-regulation of transcript abundance.
(A) In the case of cis-regulation, the eQTL for a transcript
would map over the gene encoding the transcript. In the
case of trans-regulation, DNA change influencing tran-
script abundance occurs in a gene different from that
encoding the transcript, so that the eQTL would ordinarily
not be expected to map over the gene encoding the tran-
script. (B) The classis cis-trans test examines the amount
of product derived from each allele in an F1 heterozygote.
This can be done by distinguishing the transcripts using a
SNP present in the transcript. In the example shown here,
the B6 allele is twice as active and the DBA, and for a cis-
regulated gene, the F1 would have a 2:1 ratio of the B6
transcript to the DBA transcript.
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Applications of the genetical genomics approach
relevant to disease models

The broad goal of genetical genomics experiments is
to identify genes and pathways that contribute to
complex clinical traits, and to understand how these
function as a whole in normal and disease states.
The wealth of data typically generated allows for
many different, often overlapping, questions to be
asked. In this section we discuss five specific appli-
cations of the genetical genomics approach that are
relevant to metabolic and vascular disease (Fig. 4).

Prioritizing candidate genes responsible for clinical
trait QTL. The traditional goal of QTL analyses has
been the identification of the causative gene or genes
responsible for a disease-related trait QTL (cQTL).
The cQTL defines a genomic region that encom-
passes the causal gene, but the region defined is
typically broad, with tens to hundreds of genes
residing there. Applying traditional positional clon-
ing methods to identify the causal gene is slow. Be-
cause variations in genes affecting function act
through regulation of transcript levels in at least one
half to two thirds of cases (and even in cases where
variations affect protein function, as in the case of a
nonsense mutation, transcript levels may still be
affected due to nonsense-mediated decay, changes in
nuclear transport, etc.), analysis of transcript levels
for genes residing in the QTL region is informative
in many instances. Such genes for which transcript
levels are genetically regulated will have cis-eQTL
colocalizing with the cQTL and therefore constitute
a restricted set of candidate genes. Although in many
instances colocalization of cis-eQTL and cQTL is
obvious, it is best to use an objective statistical

method of defining colocalization. We have devel-
oped and applied a ‘‘close linkage versus pleiotropy’’
test for this purpose and shown that tests for cau-
sality can also elucidate the relationship between
eQTL and cQTL, which is applicable to other situ-
ations where colocalization of QTL is important to
define (Drake et al. 2001; Schadt et al. 2005).

At this stage, the number of genes with cis-eQTL
colocalizing with the cQTL is still greater than one
can reasonably approach experimentally (e.g.,
through transgenic construction), and additional
analyses are useful to further narrow the list. One
would expect transcript levels of the causative gene
to be significantly correlated with the clinical trait
values, so determining Pearson or Spearman corre-
lation coefficients between these is helpful. Another
test we have applied is multitrait QTL analysis,
where the clinical trait and the expression traits for
genes with cis-eQTL are analyzed jointly. Finding a
significant increase in LOD score with joint analysis
is supportive of a causal relationship. Publicly
available genomic and other data can also be brought
to bear, as recently reviewed by Paigen and col-
leagues (Dipetrillo et al. 2005). The cQTL region
under consideration can be mapped for regions that
are genetically distinct between the parental strains
versus regions that appear to be identical by descent
(IBD) on the basis of SNP frequency (high frequency
in the former, low in the latter) (Davis et al. 2005;
Wade et al. 2002; Wiltshire et al. 2003). Candidate
genes residing in a region with a high SNP frequency
are more likely to be ‘‘real’’ than those that are IBD.
Primary sequence data where available could be
similarly used for determining IBD regions. Primary
sequence can also be examined for functional
mutations between the parental strains that may

Fig. 3. Examples of cis- and trans-
eQTL. For two representative genes,
LOD curve plots are given showing
the relationship of eQTL with
anatomic gene position. The linkage
map is shown for all autosomes,
beginning at the top of
Chromosome 1 and ending at the
bottom of Chromosome 19. The
Mogat1 gene (red bar) is located at
about 50 cM on Chromosome 1 and
the only major LOD score peak for
Mogat1 transcript abundance is
coincident with the gene, suggesting
cis-regulation. The Mpo gene (red
bar) is not coincident with the LOD
score peaks for Mpo transcript
abundance (located at about 80, 400,
and 620 cM), indicating trans-
regulation.
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help prioritize among the remaining candidate
genes. Finally, consistency of results for individual
candidate genes among different crosses or strains
for which phenotype, genotype, and expression data
are available can be informative, as we have recently
shown (Cervino et al. 2005).

Genetical genomic data can also be used in a
converse manner to exclude potential candidate
genes, as Attie and colleagues have shown (Lan et al.
2004). They demonstrated an unequivocal strong cis-
eQTL (LOD 30) for a candidate gene for diabetes
(Pdi), which did not colocalize with any QTL for
diabetes-related traits, thus distinguishing covaria-
tion from potential causation.

Despite all of these available tools, the list of
potential candidate genes may be relatively large,
requiring finer mapping or other methods. This is
one of the challenges for the future, as we discuss
below. Also, depending on the microarray platform
used, the coverage of the genes (i.e., the fraction of
genes physically located in the cQTL region that are
represented on the array) varies and is never 100%,
necessitating additional work to be complete.

There are two important caveats in considering
the relationship of eQTL and cQTL. The first is that
gene expression patterns are cell and tissue specific.
Complex clinical traits such as those related to
metabolic and vascular diseases involve multiple

organs and tissues. Therefore, the genetical genomic
data obtained for any given tissue represent only a
part of the whole, and one may be misled if a critical
tissue is not examined. The second caveat is that
regulation of biological processes occurs via control
of gene expression in many, but certainly not all,
situations; for example, missense or splicing varia-
tion could have functional consequences without
altering transcript levels. When large-scale gene
expression sets are obtained, it is not at all obvious
from the data whether the trait QTL is a conse-
quence of control at the level of gene expression.

Defining molecularly distinct subtypes within a
population for a clinical phenotype. It has long
been appreciated that complex disease phenotypes
that appear similar among individuals may actually
have distinct molecular subtypes. A classic example
is diabetes mellitus, for which it took years to rec-
ognize the major distinctions between type I and
type II forms. More recently, use of gene expression
profiles in cancer has allowed identification of bio-
logically distinct subtypes of disease, which could
otherwise not be distinguished yet which carry sig-
nificant therapeutic and prognostic implications
(Bucca et al. 2004).

In a comparable manner, gene expression pro-
filing can be applied to look for the presence of

F2 intercross mice
(334 BXH; 111 BXD)

Clinical (physiological) traits
(obesity, lipids, insulin, etc)

Gene expression level
(23,000+ transcripts in adipose, liver, 

muscle, brain tissues)

cQTL eQTL

QTL analysis QTL analysis

Correlation analyses

Genomic co-localization
(QTL and gene)

Cis-and trans-eQTL associated with clinical traitsis

Causal genes for clinical traits

Causality analysis

Causal gene expression network

Network/Pathway analysis

Validated genes controlling metabolic syndrome traits

Validate key genes

Pathway analyses

Fig. 4. Applications of integrative
genomics. See text for discussion.

T.A. DRAKE ET AL.: INTEGRATING GENETIC AND GENE EXPRESSION DATA 471



biological subtypes for specific clinical traits rele-
vant to metabolic and vascular diseases. We have
done this for the trait of body fat in a (B6 · DBA) F2

population in which expression microarray data
were available from liver samples. Two hundred
eighty transcripts were identified that showed the
strongest correlation with the fat mass trait. For
mice in the upper and lower 25th percentiles of the
trait, these transcripts were then subjected to bidi-
rectional hierarchical clustering. Among animals
with high fat pad mass, two distinct subgroups were
identified based on expression patterns (Fig. 5).
When QTL analysis was performed for the two
subgroups separately, distinct QTL were identified,
one corresponding to the originally identified Chro-
mosome 2 locus, the other to proximal Chromo-
some 19, a locus not identified on the initial QTL
analysis of the full F2 set. Thus, application of the
eQTL approach identified what are presumably dis-
tinct physiologic subtypes of the fat pad mass trait.
As discussed below, this subtyping was further
supported by analysis of metabolic pathways in this
data set. Thus, subgroup analysis can improve sen-
sitivity of QTL analyses and enhance understanding
of disease mechanisms.

Identifying known cellular or metabolic
‘‘pathways’’ that are involved in disease
states. Differential gene expression between ani-
mals differing in extent of clinical trait expression
can be used to identify pathways involved in disease
pathogenesis. Changes in the transcriptome in
association with complex metabolic traits typically
involve sets of functionally related transcripts. The
standard approach for identifying these is to deter-
mine which transcripts are statistically significantly
different between two groups (e.g., between obese
and lean mice) or are significantly correlated with a
particular trait across the population, and then to
determine whether particular categories of genes are
overrepresented in this subset relative to all genes
examined. The categories typically used include
metabolic and signaling pathways and the GO
ontology categories, among others (Diehn et al. 2003;
Kanehisa et al. 2004). Most gene expression analysis
software suites incorporate these analyses. However,
with this approach, small but important consistent
shifts in each individual gene composing a pathway
set may not be recognized because of statistical
considerations. Methods that examine a pathway as
a set rather than as individual genes can detect sig-
nificant coordinated changes. An analytic tool for
this, termed GSEA (Gene Set Enrichment Analysis)
has been developed by Mootha and colleagues
(Mootha et al. 2003; Subramanian et al. 2005).

We have applied both the Fisher exact test for
overrepresentation and the GSEA approach to data
from the BXD cross to identify pathways associated
with subcutaneous fat (Ghazalpour et al. 2005). As
an initial step for both methods, 387 gene sets rep-
resenting pathways or comparable functionally re-
lated genes were assembled from a variety of sources
or compiled from primary sources. These included
the KEGG database of metabolic pathways (Kanehisa
et al. 2004), GenMapp sets (Dahlquist et al. 2002),
and Biocarta signaling pathways (http://www.
biocarta.com/genes/index.asp). The subsets of mice
for study were selected as those in the top and bot-
tom 15th percentiles of the subcutaneous fat mass
trait, so that lean and obese sets containing equal
numbers of animals were analyzed. For analysis of
pathway overrepresentation by the Fisher exact test,
a discrimination score was obtained for each tran-
script, determined by comparing the mean transcript
levels between lean and obese mice using Student�s
t test. Transcripts with associated p values for the
t test of less than 0.01 were identified as being dif-
ferentially regulated in relation to the abdominal fat
mass trait, and the Fisher exact test was applied as
implemented in the EASE program to identify those
gene sets that were overrepresented among these
(Hosack et al. 2003). For analysis by the GSEA pro-
cedure, a subset of the genes on the array was iden-
tified that showed differential regulation (individual
p value < 0.05) in 10% or more of all mice. Among
this set of approximately 5000 differentially regu-
lated genes, the microarray expression data were
then ranked based on the magnitude of differences in
transcript levels between the groups and an
‘‘Enrichment Score’’ calculated as described for each
of the predetermined pathway/gene sets (Mootha
et al. 2003). The calculated Gene Enrichment Score
was then used to rank each pathway in our gene list.
To determine if the ranking of a high-scoring path-
way occurred by chance or if there was biological
significance assigned to it, we permuted the class
assignment of the high and low F2 mice and recal-
culated the gene ranking, Gene Enrichment Scores,
and ranking of each pathway. Similar pathways were
identified for the most part by each approach, but the
GSEA procedure had somewhat greater sensitivity
for detecting significance. The majority of pathways
identified are interrelated metabolically in that they
feed into the tricarboxylic acid (TCA) cycle, and the
second grouping of pathways was related to choles-
terol metabolism (Ghazalpour et al. 2005).

The above analyses do not depend on the genetic
data from the experiment, but genetic data can be
incorporated by analyzing the eQTL of transcripts
belonging to identified pathways or gene sets. If an
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entire pathway is under coordinated genetic control,
then there ought to be colocalization of eQTL for
pathway genes at the specific loci exerting that
control. This is in fact what we observed. We also
found that several of the identified loci corresponded
to QTL for the obesity trait, as one would expect.
These analyses also allow for assigning tentative
function to uncharacterized genes that show strong
correlation with pathway genes and have similarly
colocalizing eQTL. A limitation of this approach is
that it will assess only predefined gene sets, so novel
pathways, or those in which too few member genes
are known, will not be identified. It should also be
noted that the most appropriate statistical way to
assess whether a given pathway is enriched in a gene
set is still an open question. This is because the
Fisher exact test and other standard statistical tests
like the Kolmogorov test (one of the standard tests
that can be used as part of the GSEA procedure) are
based on assumptions that are usually not true for
gene expression data, related to the fact that traits
are often correlated and the categories being sear-
ched can be hierarchical.

Identifying genes that are causally related to
clinical trait expression. In complex clinical traits
such as those associated with the metabolic

syndrome, there are multiple QTL associated with
each trait, and associated pathways involving
expression of secondary genes, ultimately leading to
the expression of the clinical trait. There will also be
genes whose expression is influenced as a conse-
quence of the trait itself (i.e., reactive) rather than
being within the pathway leading to trait expression
(i.e., causal). For example, referring to Fig. 1, genes H
and J would be causal for the insulin-resistance trait,
while genes K and P would be reactive. Typical gene
expression experiments identify a set of genes whose
expression is significantly correlated with a trait or
disease of interest. However, these gene sets are
composed of both causal and reactive genes, and
because there is no way to differentiate between the
two from the data itself, further experimentation is
required.

The integration of gene expression with genetic
data has led to the development of analytical ap-
proaches to distinguish causal from reactive genes
(Schadt et al. 2005) (Fig. 6). The basis for this is
grounded in two observations: (1) gene expression
levels correlate with clinical trait measures across a
population, and (2) eQTL colocalize with clinical
trait QTL, where the QTL provide the causal anchors
needed to infer the relationships among expression
traits and between expression and clinical traits.
Genes that meet both conditions are closely linked
with the clinical trait, but they still may be either
causal or reactive. However, assessing the condi-
tional dependence of the clinical trait QTL on the
state of candidate gene expression can indicate the
likelihood of causality. If association of the clinical
trait with the QTL genotypes is abolished when
conditioned on the relative transcript abundance of
the candidate gene, then the gene is supported as
causative for the trait with respect to the QTL. If the
association between the clinical trait and QTL
genotypes is not affected by conditioning on the
candidate gene, but the association between the QTL
genotypes and expression trait vanishes after condi-
tioning on the clinical trait, then the gene is sup-
ported as reactive to the trait. In cases where
conditioning on the expression trait (or clinical trait)
does not abolish the association between the QTL
genotypes and the clinical trait (or expression trait),
then the gene and trait are supported as independent
of one another with respect to the QTL. Although
there are a number of different ways this type of
approach can be implemented mathematically, one
of the first analytical applications of this concept
was developed by Schadt et al. (2005), who used a
maximum likelihood assessment of the three possi-
ble relationships at each locus between transcript
and trait: causal, reactive, and independent.

Fig. 5. Molecularly distinct subtypes within a population
of F2 mice for the trait of body fat. These data were pro-
duced by microarray analyses for about 23,000 transcripts
using an Agilent platform. The F2 cross was between
strains DBA/2J and C57BL/6J and liver RNA was profiled.
The color matrix display for hierarchically clustered genes
(x axis) and extreme fat pad mass (FPM) (y axis). Dark/light
blue bars indicate mice in the upper/lower of the high FPM
group, and dark/light orange indicate mice in the lower/
upper half of the low FPM group. Subdivision of mice in
this manner defined groups in which FPM was influenced
by distinct genetic loci (from Schadt et al. 2003, with
permission)
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This approach was applied to identify causal
candidate genes for the trait of visceral (omental) fat
in the BXD F2 intercross. Of approximately 23,000
transcripts measured in livers of 111 F2 mice, 4423
showed significant differential expression in 10% or
more of the mice. Of these, 438 were significantly
correlated (Pearson correlation coefficient) with
omental fat pad mass (p < 0.001), while only 5 would
have been expected by chance to have that degree of
correlation. The omental fat trait had four QTL with
LOD scores of 2 or greater. There were 114 of the set
of 438 correlated transcripts with eQTL that colo-
calized with two or more of the omental fat trait
QTL. By performing joint analysis for both expres-
sion levels and clinical traits, 267 pairs of eQTL and
trait QTL were identified (corresponding to an FDR
of 0.4%). Application of the causality test identified
134 genes where the causality test was accepted, and
in the converse application of the reactive model, 23
genes were identified as reactive. These data allowed
a ranking of the 114 genes, and we are in the process
of completing validation studies of the ten top-
ranked genes.

Among the ten top-ranked genes is HSD1, a gene
that has previously been shown in a variety of
studies to be associated with obesity and metabolic
syndrome (Masuzaki and Flier 2003). In addition,
we have evaluated several other top-ranked genes
in vivo, using either transgenic or knockout ap-
proaches, and found an effect on fat mass in each of
these, as recently published (Schadt et al. 2005).
C3ar1)/) and Tgfbr2+/) mice were obtained from
Deltagen, Inc., and a transgenic for Zfp90 was con-
structed using a human BAC clone. All three models
exhibited significant differences in adiposity com-
pared with background strains. Evaluation of the
remaining top-ranked genes is in progress through
the construction of BAC transgenics for each of the
genes. These data are strongly supportive of our ap-
proach, although in vivo evaluation of a larger
number of predicted genes is necessary to determine
the sensitivity of the method.

In the validation studies discussed above, we
have focused on the genes identified as causal for the
clinical trait being studied (obesity). However, the
genes identified as reactive to the trait are also of
interest because they may play a role in secondary
effects of the primary trait such as insulin sensitivity
or atherosclerosis. While detected as reactive in one
cross, such genes may actually be causal in other
contexts given feedback control mechanisms known
to function in complex systems. It is also important
to appreciate that this type of analysis greatly
expands the information that can be derived from a
given experimental intercross. The traditional

approach of identifying those genes responsible for
clinical QTL restricts the findings to a limited
number of QTL (and hence a limited number of
genes) and to only genes that have functionally sig-
nificant sequence differences between the parental
strains used in the cross (i.e., those that would gen-
erate cis-eQTL). In the approach described above, the
genes identified need not have sequence differences
between the parental strains and are typically trans-
eQTL. The consequence is a much more efficient
identification of causal genes for any given trait.

Constructing models of biological networks
relevant to disease. As discussed above, there are
methods and tools available to identify individual
genes, sets of genes, and predefined ‘‘pathways’’ that
play a role in disease. However, it is obvious that
many genes and pathways are involved in trait
expression, and the data by themselves do not indi-
cate how they interact as a whole, or even which
among them are likely to have a greater role or im-
pact if therapeutically targeted. Developing realistic
models for such complex diseases as diabetes and
atherosclerosis that predict the role and function of
each component remains far off. However, tools
currently available that allow empirical gene
expression ‘‘network’’ modeling are extremely
promising for providing a large-scale picture of how
sets of genes interact and which genes are more
likely to play key roles.

There is substantial literature concerning net-
work modeling of biological systems and a number
of recent reviews (Barabasi and Oltvai 2004; Kitano
2004; Xia et al. 2004). Networks can be constructed
from any large-scale data set where repeated mea-
sures are obtained under varying conditions. In a
genetical genomic study, gene transcripts are mea-
sured across a set of animals, and the varying con-
ditions are the consequence of the endogenous
genetic variation among individuals in the popula-
tion. Networks are frequently depicted graphically as
a series of interconnected nodes, where the nodes are
the individual gene transcripts and the lines con-
necting them (‘‘edges’’ in formal terminology) rep-
resent significant correlations in expression levels. A
given gene transcript may be connected to few or
many other transcripts, and the measure of this is
referred to as connectivity. Analyses of various bio-
logical data sets have shown that all networks have a
characteristic pattern referred to as ‘‘scale free,’’
where there are a limited number of highly con-
nected nodes (termed ‘‘hubs’’) around which are
many more nodes with fewer connections (Barabasi
and Oltvai 2004). The full network derived from all
the data is typically composed of subnetworks or
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modules, where a set of nodes is highly intercon-
nected, with relatively fewer connections to other
modules in the network overall.

The gene expression network that one con-
structs from a data set is therefore an overall picture
of how transcripts are related to each other. Tran-
scripts that are in the same subnetwork and share
connections are likely to function similarly. Tran-
scripts that have many connections are likely to
have a greater impact on the overall functioning of
the network than those that have few connections.
Transcripts that serve as points of connection be-
tween different modules or subnetworks are likely to
be important in overall network stability and struc-
ture. Because the network is constructed empiri-
cally, without needing to know beforehand the
established function of any specific transcript, tran-
scripts for genes whose functions are unknown can
be assigned tentative roles based on their close
relationship with genes of known function. There
are various analytical approaches one can take for
these analyses, each of which has somewhat differ-
ent assumptions and rules for constructing the net-
work. These also vary in how one integrates
phenotype information to relate the network to the
disease process under study.

One of the approaches of particular interest for
genetical genomic studies is Bayesian network
analysis. Bayesian approaches allow for different
types of data to be used in constructing networks and
for incorporating directional relationships between
nodes in a network. As discussed above, the inte-
gration of genetics allows for causal relationships to
be established between transcripts and traits and
among transcripts. Incorporating this information
into network construction improves its power sig-
nificantly (Zhu et al. 2004). Another approach for
constructing networks from genetical genomic data
is gene coexpression network analysis (Zhang and

Horvath 2005). In this method, modules composed of
sets of highly correlated genes are identified. These
sets can be related to clinical trait expression and to
common loci of genetic control.

Networks derived from genetical genomic data
sets are in the early stages of being investigated and
evaluated for their use and significance and there is
limited validation as yet. Although subnetworks or
modules are often enriched for genes of particular
pathways or known function, it is far from a
one�to-one correspondence, and genes of various
functional categories according to established on-
tologies (functional categories) are often found to be
closely related in a network. Understanding the
relationship of gene expression networks to classi-
cal metabolic pathways or to networks derived from
protein interactions or other elements will take
much more work. However, at our current level of
understanding, two very significant benefits that
can be derived from gene expression network anal-
yses are the ability to identify genes that have a
high likelihood of controlling a clinical trait (the
highly connected hub genes), and the ability to as-
sign presumptive roles for otherwise uncharacter-
ized genes.

Challenges and future directions

There are many challenges one could discuss and
tremendous opportunities for future work. In this
section we address several challenges that are of
immediate importance and where we believe feasi-
ble approaches exist. These are (1) a need for rapid
methods for validating candidate genes; (2) moving
beyond genetic crosses to improve gene identifica-
tion; (3) extending from global gene expression to
include proteome and metabolome analyses; and (4)
integrating genetical genomic data into publicly
available databases.
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Fig. 6. Causal and reactive gene interactions
in a complex trait. In this example, four loci
(QTL1�4) contribute to a complex trait. The
DNA variations of the QTL directly
influence the functions of genes G1�4, which
in turn perturb downstream genes that are
causal for obesity (G6,7,8) or reactive for the
trait (G9, G10, G11). Gene G5 is independent
of the trait but will nevertheless be
correlated because its levels are controlled
by a causal gene (G1).
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Candidate gene prioritization and validation

A major challenge concerns the ‘‘problem’’ of having
an abundance of high-likelihood candidate genes.
The standard approach for validating whether a gene
plays a role in a particular phenotypic process is to
create mutants in which the gene has been deleted or
overexpressed and examine whether they alter trait
expression. This is time consuming and costly and,
for various reasons, may not be as straightforward to
interpret as one might think if negative results are
obtained. In the long run, there are plans in the ge-
nomics community to systematically develop mu-
tants for all expressed genes. However, at present
only a relatively small fraction are available as ex-
tant strains or as banked gene-trapped embryonic
stem (ES) cell lines. Even for such apparently
‘‘readily available’’ resources, the effort needed is
considerable. Frequently, the administrative diffi-
culties involved in obtaining mutant strains from
other investigators are nontrivial and time consum-
ing. Additional steps are needed to generate mutant
mice from gene-trapped ES cell lines. In either case,
expanding breeder pairs to generate a sufficient
number of homozygous mice for study (at least
10�20 mice per group for traits as complex as ath-
erosclerosis) adds more time. For validation of clin-
ical traits such as obesity, diabetes, and
atherosclerosis, mice usually need to undergo a
protocol of 12�16 weeks of specified diet after
weaning. Altogether, for any given gene this adds up
to a minimum of one to two years of effort and
considerable expense for validation.

Therefore, there is a need to develop efficient
methods for ‘‘screening’’ candidate genes in a man-
ner that allows prioritizing those most likely to be
most physiologically relevant. As discussed above,
the causality analyses and the network construc-
tions are promising approaches, but these still yield
relatively large numbers of candidate genes. We are
currently assessing the use of a sequential approach
that involves the use of surrogate end points based
on gene expression profiles. Using the data set from
which a candidate gene originated, a gene expression
‘‘signature’’ can be derived using the causal gene
analysis technique described above. This can, in
turn, be used as a validation test in various model
systems by comparing the set of affected genes al-
tered by a given intervention with the set defined by
the causal expression signature. We have used this
approach at a relatively advanced validation stage,
comparing the expression signature obtained from
intercross studies with those derived from knockout
and/or inhibitor studies (Mehrabian et al. 2005).
Results for two identified candidate genes, HSD1

and ALOX5, indicate that there is a statistically
significant conservation of the gene expression sig-
natures between the original intercross mice and the
targeted mutant mice. We are first screening candi-
date genes in cell culture systems—either cell lines
or primary cell cultures appropriate for the gene and
trait of interest—followed by comparable short-term
in vivo studies if needed, where the end point is
detecting conservation of the gene expression sig-
nature rather than the trait itself at this stage. The
most promising genes identified would then be
pursued in the traditional manner.

Use of outbred stocks

One of the limitations of traditional QTL mapping
that remains an issue for transcript mapping is that
the region defined by a QTL is large, a situation
improved only modestly by dense genotype marker
spacing. Even with the above-described approach of
using cis-eQTL to enhance the ability to prioritize
candidate genes, there frequently remain more can-
didate genes requiring followup than is feasible to
handle. The basis resides in the limited number of
crossovers that occur in any given animal of an F2

intercross. Recent studies suggest that a promising
approach to achieve highly accurate mapping is the
use of outbred stocks. In particular, Flint and col-
leagues have demonstrated their method of finely
mapping a quantitative behavioral trait (Yalcin et al.
2004, 2005). These mouse stocks are somewhat
analogous to human populations, in which there are
multiple alleles at any given locus, and it is likely
that the spectrum of functional mutations observed
in the available inbred strains will be represented in
the outbred population. However, mice also dem-
onstrate haplotype structures, and a limited number
of haplotypes occur frequently. Haplotype blocks are
much smaller and allow much finer mapping than
could achieved in any intercross setting because they
have accumulated over many tens to hundreds of
generations. Extremely high-density genotyping
would be necessary, but it is now technically feasi-
ble. Cheung et al. (2005) have recently reported using
this approach in humans.

Incorporation of proteomic and metabolomic data

The concepts and approaches discussed above for
transcript levels are directly applicable to protein
(and metabolite) measures as well, since QTL anal-
ysis can be applied to any quantitative or semi-
quantitative measurement and a protein has a
corresponding gene encoding it. Thus, the finding of
a QTL for variation in protein quantity or activity
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that directly coincides with the physical location of
the gene encoding that protein would suggest that
the underlying genetic variation responsible resides
in the coding or regulatory regions of that gene (i.e.,
is cis-acting). Finding both a cis-protein QTL and a
cis-eQTL would be especially compelling. If the QTL
were not at the location of the corresponding gene,
then the genetic control of the protein measure must
be through a different gene. In fact, one of the first
applications of this approach was performed using
measurement of protein instead of mRNA. Klose
et al. (2002) used large two-dimensional gel electro-
phoresis to resolve and quantitate differences of
mouse brain proteins from backcross mice, allowing
a genetic analysis. Over 1000 proteins were shown to
differ and over 600 were genetically mapped (i.e.,
QTL for levels of protein expression were deter-
mined, analogous to our transcript expression QTL).
As with transcript QTL, some proteins mapped to
the location of the gene for given protein (in ‘‘cis’’)
and others mapped to one or more locations away
from the physical location of the respective gene (in
‘‘trans’’). The technologies for quantitative global
protein measurement are far from the state available
for mRNA, but there will undoubtedly be advances
made in the coming years. The concurrent analysis
of noncoding RNA expression with gene and protein
expression studies is also expected to be highly
informative and an area of strong interest.

Integrating genetical genomic data into publicly
available databases

The ‘‘raw’’ data generated by genetical genomic
studies contain information of broad interest and
importance that extends beyond the immediate
questions posed by the originating study itself. Much
of these data are/will be made publicly available.
Therefore, it is important that researchers who use
mouse genetics approaches understand the data�s
applicability in conjunction with other data such as
SNPs, haplotypes, strain and gene-related pheno-
types, QTLs, and cross-species aspects of these. Data
concerning cis-eQTL are of particular interest be-
cause these indicate that functionally significant
sequence differences exist in the respective gene
between the strains from which the data were de-
rived. For example, we recently reported on conclu-
sions derived from ultrafine mapping of SNPs for the
C57BLKS/J strain in conjunction with eQTL data
derived from a C57BL/6J and DBA/2J F2 intercross
(Davis et al. 2005). The C57BLKS/J strain (BKS) is
genetically composed of primarily the C57BL/6J and
DBA/2J genomes (approximately 70% and 20%,
respectively), and it is particularly susceptible to

diabetes and atherosclerosis compared with the
respective originating strains. Identification of the
genetic elements that predispose to these important
diseases is of obvious interest. Given the genetic
makeup of the BKS strain, those cis-regulated genes
located in the DBA-like blocks of the BKS strain
constitute primary candidates for genes that con-
tribute to disease susceptibility. As discussed above,
those cis-regulated genes whose expression levels are
correlated with the trait of interest are primary
candidates. As an example, we showed that the Lipin
gene resides in a DBA-like region in the BKS strain,
exhibited a cis-eQTL in the BXD cross with a five-
fold difference in expression between parental
genotypes, and was strongly correlated with adipose
tissue-related phenotypes in that cross. Indepen-
dently performed transgenic and knockout studies
have shown that the Lipin gene shows significant
influences on diabetes-related traits. By analogous
logic, knowledge of cis-eQTL would be useful for
prioritizing candidate genes residing in a QTL that
had been identified in past experiments, so long as it
was derived from a cross of the same inbred strains.

The Mouse Genome Informatics database
(http://www.informatics.jax.org/) and the Rat Gen-
ome Database (http://rgd.mcw.edu/) include data
related to QTL currently curated and incorporates
mouse QTL studies and gene-related phenotype
information. Also, the Rat Genome Database and
some specific disease-related sites such as the
Diabetes Genome Anatomy Project (http://www.
diabetesgenome.org/) include microarray data sets as
well, and as use of genetical genomic studies ex-
pands, these data will likely be incorporated.

Conclusions

The integrative genomics (‘‘genetical genomics’’) ap-
proach is proving extremely useful for identifying
genes and pathways that contribute to complex clin-
ical traits. Clearly, the coincidence of clinical trait
QTL and eQTL can help in the prioritization of posi-
tional candidate genes. More importantly, mathe-
matical modeling of correlations between levels of
transcripts and clinical traits in genetic crosses can
allow prediction of causal interactions and the iden-
tification of ‘‘key driver’’ genes and can provide the
data needed to develop models of biological networks
that better explain disease pathogenesis. We antici-
pate that in the near future, the common variations
influencing transcript levels both in cis and in trans
will be defined for human populations and that the
knowledge and experience gained from mouse models
will complement human studies. It is likely that
‘‘genetical genomics’’ will have a revolutionary
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impact on our understanding of complex traits such
as cardiovascular disease and diabetes.
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